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We employ hydrodynamic equations to investigate nonstationary channel flows of freely cooling dilute gases
of hard and smooth spheres with nearly elastic particle collisions. This work focuses on the regime where the
sound travel time through the channel is much shorter than the characteristic cooling time of the gas. As a
result, the gas pressure rapidly becomes almost homogeneous, while the typical Mach number of the flow
drops well below unity. Eliminating the acoustic modes and employing Lagrangian coordinates, we reduce the
hydrodynamic equations to a single nonlinear and nonlocal equation of a reaction-diffusion type. This equation
describes a broad class of channel flows and, in particular, can follow the development of the clustering
instability from a weakly perturbed homogeneous cooling state to strongly nonlinear states. If the heat diffu-
sion is neglected, the reduced equation becomes exactly soluble, and the solution develops a finite-time density
blowup. The blowup has the same local features at singularity as those exhibited by the recently found family
of exact solutions of the full set of ideal hydrodynamic equations �I. Fouxon et al., Phys. Rev. E 75, 050301�R�
�2007�; Phys. Fluids 19, 093303 �2007��. The heat diffusion, however, always becomes important near the
attempted singularity. It arrests the density blowup and brings about previously unknown inhomogeneous
cooling states �ICSs� of the gas, where the pressure continues to decay with time, while the density profile
becomes time-independent. The ICSs represent exact solutions of the full set of granular hydrodynamic equa-
tions. Both the density profile of an ICS and the characteristic relaxation time toward it are determined by a
single dimensionless parameter L that describes the relative role of the inelastic energy loss and heat diffusion.
At L�1 the intermediate cooling dynamics proceeds as a competition between “holes”: low-density regions of
the gas. This competition resembles Ostwald ripening �only one hole survives at the end�, and we report a
particular regime where the “hole ripening” statistics exhibits a simple dynamic scaling behavior.
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I. INTRODUCTION

Clustering of matter is a spectacular example of structure
formation in nature. A fascinating example of clustering is
provided by granular gases: gases of macroscopic particles
that lose kinetic energy in collisions. Granular gas is a low-
density limit of granular flows �1,2�. The simplest version of
the granular gas model assumes a dilute assembly of identi-
cal smooth hard spheres �with diameter � and unit mass�
who lose energy at binary collisions in such a way that the
normal component of the relative velocity of the colliding
particles gets reduced by a constant factor 0�r�1 �the co-
efficient of normal restitution� upon each collision. Granular
gases exhibit various pattern forming instabilities, including
the shearing and clustering instability of a freely cooling
homogeneous inelastic gas �3–14�. This instability causes the
generation of a macroscopic flow, both solenoidal and poten-
tial, and formation of dense clusters of particles.

A natural theoretical description of macroscopic granular
flows is provided by the Navier-Stokes granular hydrody-
namics �1,2�. Although the criteria of its validity are quite
restrictive, see below, granular hydrodynamics has a great
predictive power, sometimes going far beyond the formal
limits of applicability �2�. Recently, granular hydrodynamics
has been applied to a variety of nonstationary flows of
granular gases �12,15–18�. Nonstationary flows provide
sharp tests to continuum models of granular flows, especially
when the time-dependent solutions of the continuum equa-
tions tend to develop finite-time singularities. Examples are

provided by the recently predicted finite-time blowup of the
gas density in freely cooling granular gases: at zero gravity
�12,17,18� �as described by ideal granular hydrodynamic
equations�, and at finite gravity �even in the framework of
nonideal granular hydrodynamic equations� �16�.

We will assume in this paper that particle collisions are
almost elastic, the local gas density �that we denote by �� is
much smaller than the close-packing density, and the Knud-
sen number is very small:

1 − r � 1, ��d � 1, and lfree/L � 1. �1�

Here d�1 is the dimension of space, lfree is the mean free
path of the particles, and L is the characteristic length scale
of the hydrodynamic fields. Under these assumptions �the
second and third ones need to be verified a posteriori� the
Navier-Stokes hydrodynamics provides a quantitatively ac-
curate leading-order theory �1,2�. It was shown �4,5�, by us-
ing hydrodynamic equations that, for sufficiently large sys-
tems, the homogeneous cooling state �HCS� of the granular
gas becomes unstable with respect to small perturbations.
There are two linearly unstable modes. The shear mode cor-
responds to the development of a macroscopic solenoidal
flow, while the clustering mode corresponds to the develop-
ment of a macroscopic potential flow that brings about for-
mation of clusters of particles.

A consistent nonlinear hydrodynamic theory of the clus-
tering instability has not been available for quite a long time.
Solving strongly nonlinear hydrodynamic equations is hard
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�even numerically�, and one looks for additional simplifica-
tions. Following Refs. �12,13,17,18�, we will assume
throughout this paper that the macroscopic flow �but not mi-
croscopic motion of the particles� is one dimensional �1D�.
This assumption is natural in the geometry of a narrow chan-
nel with perfectly elastic side walls that we adopt here. In a
narrow channel both the clustering mode in the transverse
directions, and the shear mode are suppressed �see Refs.
�12,13� for detail�. As a result, the macroscopic flow can
depend only on the coordinate along the channel and time,
and we can focus on the development of the pure clustering
mode as it enters a strongly nonlinear regime.

Efrati et al. �12� investigated numerically the long-
wavelength limit of such a quasi-1D clustering instability. In
this limit the inelastic energy loss of the gas is the fastest
process, so the gas pressure rapidly drops to a very small
value. The further dynamics becomes �almost� purely inertial
which �almost� brings about a finite-time blowup of the ve-
locity gradient and, therefore, of the density �19�. The signa-
tures of this finite-time singularity were indeed observed in
the numerical solution of the hydrodynamic equations �12�
until the growing gas density became so high that the nu-
merical scheme lost accuracy. The numerical results of Ref.
�12� were tested in molecular dynamics �MD� simulations
�13�. The MD simulations supported the free-flow blowup
scenario until the time when the gas density approached the
hexagonal close-packing value, and the further density
growth stopped.

Recently, Fouxon et al. �17,18� analyzed, analytically and
numerically, the one-dimensional flow in the framework of
equations of ideal hydrodynamics �that is, neglecting the
heat diffusion and viscosity effects�. They derived a family
of exact solutions to these equations, with and without
shocks, for which an initially smooth flow develops a finite-
time density blowup. Close to the blowup time tc, the maxi-
mum density exhibits a power law behavior ��tc− t�−2. The
velocity gradient blows up as �−�tc− t�−1, whereas the ve-
locity itself remains continuous and develops a cusp, rather
than a shock discontinuity, at the singularity. The gas tem-
perature vanishes at the singularity, but the pressure remains
finite. Extensive numerical simulations with the ideal hydro-
dynamic equations showed that the singularity exhibited by
the exact solutions is universal, as it develops for generic
initial conditions. Very recently, the existence of the at-
tempted blowup regime has been proved in molecular dy-
namic simulations of a gas of nearly elastically colliding
hard disks in a channel geometry �20�. The results of Refs.
�17,18� also imply that, for long wavelength initial condi-
tions, the free flow regime may not hold all the way to the
density blowup �17,18�. Very close to the attempted free-flow
singularity, compressional heating starts to act. As a result,
the gas pressure again becomes important and changes the
local blowup properties.

A crucial feature of the finite-time singularity of the ideal
hydrodynamic equations is that it obeys an isobaric scenario:
the �finite� gas pressure becomes uniform in space in a close
vicinity of the developing singularity �18�. This hints at the
possibility of an additional simplification of the problem. In-
deed, an �almost� homogeneous pressure in a gas implies a
low Mach number flow, when the inertial terms in the mo-

mentum equation are small compared to the pressure gradi-
ent term. This regime appears when the sound travel time
through the system is very short compared with other time
scales of the problem, and one is interested in the dynamics
of the system at the long time scales �21–28�. In particular,
this regime appears naturally in the linear theory of the clus-
tering instability of the HCS for intermediate wavelengths of
the perturbations; see below. It is this �almost� spatially in-
dependent pressure regime that we will be considering in the
present work.

The remainder of the paper is organized as follows. In
Sec. II we start with a full set of equations of granular hy-
drodynamic for a dilute granular flow in a channel and re-
duce them, for sufficiently short channels, to the low Mach
number flow equations. In Sec. III we employ Lagrangian
coordinates which enable us to exactly reduce the low Mach
number flow equations to a single nonlinear and nonlocal
equation, of a reaction-diffusion type, for the square root of
the inverse gas density. The new equation is tested in Sec. IV
on two simple problems: the HCS and the linear theory of
clustering instability in short channels. In Sec. V we show
that, when the heat diffusion is neglected, the new equation
becomes exactly soluble, and the solution develops a finite-
time density blowup with the same universal features at sin-
gularity as those exhibited by the family of exact solutions of
the full set of ideal granular hydrodynamic equations
�17,18�. Section VI presents an analytical and numerical
analysis that shows that the heat diffusion term, no matter
how small in the beginning, becomes important near the at-
tempted density blowup. As a result, the density blowup is
arrested and an inhomogeneous cooling state �ICS� of the gas
emerges, with a time-independent inhomogeneous density
profile. Importantly, the ICSs represent exact solutions of
hydrodynamic equations. A limiting form of the ICS is what
we call the “hole,” and we investigate its properties and the
relaxation dynamics toward it. For sufficiently long channels
�other parameters being fixed� the cooling dynamics of the
system takes the form of a competition between, and “ripen-
ing” of, holes. Therefore, in Sec. VII we investigate the dy-
namics and statistics of this competition. In Sec. VIII we
summarize our results and put them into a perspective.

II. GRANULAR HYDRODYNAMICS AND A LOW MACH
NUMBER FLOW

For flows depending on a single spatial coordinate x and
time t the granular hydrodynamic equations can be written as
follows:
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Here 	 is the adiabatic index of the gas �	=2 and 5 /3 for
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d=2 and d=3, respectively�, 
=2��d−1�/2�1−r2��d−1 /
�d�d /2�� �see, e.g., �8��, �¯� is the gamma function, and
d�2 is the dimension of space, so that d=2 corresponds to
disks, and d=3 to hard spheres. Furthermore, �0= �2����−1

and �0=4�0 in 2D, and �0=5�3�2���−1 and �0=15�0 /8 in
3D �1�. Equations �2�–�4� differ from the hydrodynamic
equations for a dilute gas of elastically colliding spheres only
by the presence of the inelastic loss term −
�T3/2 which is
proportional to the average energy loss per collision, ��1
−r2�T, and to the collision rate, ��T1/2.

It will be convenient for our purposes to rewrite Eqs.
�2�–�4� in terms of the pressure p=�T, rather than the tem-
perature. The energy equation �4� becomes

�p
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+ v
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�
� �v

�x
�2

. �5�

A set of hydrodynamic equations can be simplified if there is
a time scale separation or, equivalently, a length scale sepa-
ration, in the problem. For a freely cooling granular gas, a
basic time scale is the characteristic cooling time

tc =
2


�0
1/2p0

1/2 , �6�

where �0 is the average gas density �the total gas mass di-
vided by the volume of the channel� and p0 is a characteristic
value of the initial pressure. There are two characteristic
length scales related to tc. The first is the sound travel dis-
tance

ls =
	�2


�0
� cstc,

which is of the order of the distance a sound wave with speed
cs= �	p0 /�0�1/2 travels during the time tc. The quantity ls is
the same as the length scale l introduced in Refs. �17,18�.

The second characteristic length scale is the heat diffusion
length

ld � ��0p0
1/2tc

�0
3/2 �1/2

�
�0

1/2


1/2�0

which, up to a numerical prefactor, coincides with the critical
length

lcr =� 2�0


�0
2 , �7�

predicted by the linear theory of the clustering instability.
The ratio ls / ld is of order ��0
�−1/2��1−r2�−1/2. As we have
already assumed a strong inequality 1−r2�1, this ratio is
very large: ls / ld�1. Throughout the rest of the paper we will
also assume that the channel length L is much shorter than
the sound travel distance ls. This hierarchy of length scales
brings about a reduced set of equations, in much the same
way as in hydrodynamics of optically thin gases and plasmas
that cool by their own radiation �21,23–25,28�. Note that the
length scale separation L� ls is equivalent to a time scale

separation: the sound travel time through the channel, L /cs,
is much shorter than the characteristic cooling time tc. As a
result, sound waves rapidly make the pressure �almost� ho-
mogeneous throughout the channel. The subsequent slower
evolution of the gas proceeds on the background of an al-
most homogeneous �but in general time-dependent� gas pres-
sure, while typical Mach numbers of the flow are much less
than unity. In a more formal language, this reduction of the
hydrodynamic equations corresponds to elimination of
acoustic modes.

Before we perform the reduction procedure, let us intro-
duce rescaled variables. We will measure the distance along
the channel in the units of lcr, rescale time by tc, and measure
the gas density, pressure, and velocity in the units of �0, p0,
and lcr / tc, respectively. Keeping the original notation for the
rescaled variables, we observe that Eq. �2� does not change,
while Eqs. �3� and �5� become

�1�� �v
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� , �8�
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, �9�

where �1=�0
 /2, �2=�0
 /2, and �1��2�1−r2�1. We
will limit ourselves to the zeroth order approximation with
respect to this small parameter and send �1 and �2 to zero.
The continuity equation �2� does not change. The momentum
equation �8� becomes �p /�x=0, therefore p= p�t� is indepen-
dent of x. The energy equation becomes

ṗ�t� = − 	p�t�
�v
�x

− 2�1/2p�t�3/2 + p�t�3/2 �

�x	 1
��

�

�x
�1

�
�
 .

�10�

The rescaled length of the channel is

L =
L

lcr
= ����/2��1 − r2�1/2�0�L in 2D

�16�/75�1 − r2�1/2�0�2L in 3D.
� �11�

Note that, in the rescaled variables, the rescaled length of the
channel L coincides with the rescaled total mass of the gas,
0

L��x , t�dx.
To get an explicit expression for ṗ we integrate Eq. �10�

over the whole channel. Assuming either periodic or no-flux
boundary conditions �BCs� at the channel ends x=0 and x
=L, we obtain

ṗ�t�
p�t�3/2 = − 2��1/2�x,t��x, �12�

where we have introduced the spatial average

�¯�x =
1

L�0

L
�¯�dx .

For the low Mach number flow, Eq. �12� describes, in the
leading order, the global energy balance of the gas, see Sec.
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VI C below. Equations �2�, �10�, and �12� for ��x , t�, v�x , t�,
and p�t� make a complete set of reduced but fully nonlinear
equations for the low Mach number flow of a freely cooling
granular gas in a channel geometry. As is usually the case for
low Mach number flows, the viscous terms dropped from the
reduced formulation, while the heat diffusion term remains.

The rescaled length �or mass� of the system L, see Eq.
�11�, is determined by the relative role of the inelastic energy
loss and heat diffusion. As we will see shortly, L controls the
main properties of the cooling dynamics. For comparison,
the characteristic initial pressure p0 only sets the time scale
for the dynamics. To facilitate future comparisons of the
theory with MD simulations, we rewrite the parameter L in a
slightly different form:

L =�
���1 − r2�Np�

2Ly

in 2D

�16��1 − r2�Np�2

�75LyLz

in 3D.�
Here Np is the total number of particles in the channel, and
Ly and Lz are the transverse channel dimensions.

III. LAGRANGIAN DESCRIPTION AND NONLOCAL
REACTION-DIFFUSION EQUATION

Remarkably, it is possible to bring the three equations �2�,
�10�, and �12� to a single nonlocal equation of a reaction-
diffusion type. Let us first introduce Lagrangian mass coor-
dinates �29�. It is convenient to choose a reference frame so
that v�x=0, t�=0. For the periodic boundary conditions
�BCs� one can always achieve this by exploiting the Galilian
invariance of the hydrodynamic equations to get rid of the
center-of-mass motion. This sets v�x=0, t�=0, where x=0 is
the center-of-mass coordinate. For the no-flux BC �impen-
etrable walls�, a natural choice of x=0 is at one of the walls,
where the gas velocity is again zero. Then a convenient
choice of the Lagrangian mass coordinate is

m�x,t� = �
0

x

��x�,t�dx�, �13�

which is simply the �rescaled� mass content between the Eu-
lerian points 0 and x. The inverse transformation is

x�m,t� = �
0

m dm�

��m�,t�
. �14�

In the Lagrangian coordinates Eqs. �2� and �10� become

�

�t
�1

�
� =

�v
�m

, �15�

ṗ = − 	p�
�v
�m

− 2p3/2�1/2 + p3/2�
�

�m
���

�

�m

1

�
� . �16�

As the total rescaled mass of the gas is equal to the rescaled
channel length L, we define the spatial average in the La-
grangian coordinate as

�¯� =
1

L�0

L
�¯�dm ,

and rewrite Eq. �12� as

ṗ�t�
p�t�3/2 = − 2� 1

�1/2�m,t�� . �17�

It is convenient to introduce a new rescaled variable
w�m , t�=�−1/2�m , t� and a new rescaled time

� =
1

	
�

0

t

p1/2�t��dt�. �18�

Then, by eliminating �mv and ṗ from Eqs. �15�–�17�, we can
reduce these equations to a single integro-differential equa-
tion of a reaction-diffusion type:

w
�w

��
= − w + w2�w� +

�2w

�m2 . �19�

Equation �19� describes a broad class of slow 1D flows in
freely cooling nearly elastic granular gases. In particular, this
equation encodes the development of the clustering instabil-
ity: from a weakly perturbed HCS �after a brief acoustic
transient� all the way to the strongly nonlinear stage. Indeed,
let us rewrite Eq. �17� in terms of the new variable w�m ,��
and new time �:

1

p���
dp

d�
= − 2	�w�m,��� . �20�

Once Eq. �19� for w�m ,�� is solved, we can calculate the
pressure p��� from Eq. �20� and then return to the �rescaled�
physical time t using Eq. �18�:

t = 	�
0

� d��

p1/2����
. �21�

Furthermore, using Eq. �15� and the condition v�m=0, t�=0,
we can find the gas velocity: v�m , t�=0

m�tw
2�m� , t�dm�. Fi-

nally, we can return to the Eulerian coordinate by using Eq.
�14�: x�m , t�=0

mw2�m� , t�dm�.
Notably, Eq. �19� is parameter-free: the only parameter

entering the problem �except possible parameters introduced
by the initial condition w�m ,0�� is the rescaled system length
�or mass� L. Conservation of the total mass of the gas in the
channel appears in the Lagrangian formulation as the conser-
vation law

�w2�m,��� = 1, �22�

easily verifiable from Eq. �19�.

IV. SIMPLE TESTS: HCS AND LINEAR THEORY
OF CLUSTERING INSTABILITY

As a first test of Eqs. �19� and �20�, let us consider a HCS.
Here at t=0 we have �in the physical units� ��m , t=0�=�0

=const, T�m , t=0�=T0=const, and v�m , t=0�=0 and, there-
fore, w�m , t=0�=1 and p�t=0�= p0=�0T0. As the gas density
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remains constant in space at t�0, we can rewrite Eq. �19� as

dw���
d�

= − 1 + w2��� . �23�

The solution of this equation with the initial condition
w�0�=1 is of course w���=1: the gas remains spatially ho-
mogeneous. Now we use Eq. �17� and obtain

ṗ�t�
p�t�3/2 = − 1, �24�

which yields, in the rescaled variables, Haff’s law for the gas
pressure:

p�t� =
1

�1 + t�2 . �25�

The next test of Eq. �19� is the linear stability analysis of
a HCS. While the reduced Eq. �19� is not supposed to cap-
ture the evolution of small perturbations with an arbitrary
polarization, it must reproduce correctly the evolution of the
clustering mode in the limit when the perturbation wave-
lengths are small compared with the sound travel distance ls.
Let us show it to indeed be the case. We look for the solution
of rescaled Eq. �19� in the form w�m ,��=1+�w�m ,��, where
��w�m ,����1. �Correspondingly, the rescaled density pertur-
bation ���m ,��=−2�w�m ,��.� One can represent �w�m , t� as
a linear superposition of sines and cosines of km with differ-
ent �rescaled� wave numbers k. This fact, in conjunction with
the BCs at the ends of the channel, guarantees that
��w�m ,���=0. Then Eq. �19� yields

�

��
�w�m,�� = �w�m,�� +

�2

�m2�w�m,�� . �26�

For a single mode perturbation with wave number k we ob-
tain

�w�m,�� = �w�m,0�êk� �27�

with the growth or damping rate

̂k = 1 − k2. �28�

For k�k*=1 �correspondingly, k�k*=1� Eqs. �27� and �28�
describe an exponential growth �correspondingly, decay� of a
small single-mode perturbation in time �. Recalling that we
rescaled the coordinate to the critical length lcr, provided by
the complete �unreduced� linear theory, we immediately no-
tice that Eq. �28� correctly predicts the instability threshold.
To go back to the physical time t we substitute, in the leading
order, Haff’s law �25� into Eq. �18� and obtain, after elemen-
tary integration,

� =
1

	
ln�1 + t� . �29�

Plugging it into Eq. �27�, we obtain an algebraic growth of
the small perturbations in the physical time:

�w�m,t� = �w�m,0��1 + t�̂k/	. �30�

The growth exponent = ̂k /	, with ̂k from Eq. �28�
coincides with that obtained from the complete linear stabil-
ity analysis �5�, if we assume there kls�1 �in the physical
units� and consider the clustering mode, rather than the two
decaying acoustic modes. Figure 1 shows this comparison in
a graphic form. At kls�1 the isobaric growth rate underes-
timates the true growth rate, but in the region of kls�1 ex-
cellent agreement is observed. The comparison with the
complete linear stability analysis is instructive for two more
reasons. First, as was observed by McNamara �5�, for kls
�1 the pressure perturbations of the clustering mode vanish
in the leading order in 1 / �kls�. That is, the linear density and
temperature perturbations grow on the background of an �al-
most� constant pressure. Second, the viscosity effects do not
affect the growth exponent in this regime �5�. As our reduced
formalism shows, the last two properties persist, for the low
Mach number flow, in the nonlinear regime as well.

Having successfully tested our reduced model in these
two simple cases, we now consider nonlinear evolution.

V. NEGLECTING HEAT DIFFUSION CAUSES
A DENSITY BLOWUP

As we mentioned earlier, the only governing parameter in
Eq. �19�, except parameters introduced by the initial condi-
tion, is the rescaled system length-mass L. In the limit of
L�1, and for a sufficiently large-scale initial condition, one

20 40 60 80 100
k ls

0
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0.8

1

�
k

a

�1�0.5 0 0.5 1 1.5 2
log10�kls�

0
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0.8

1

�
k

b

FIG. 1. �Color online� Growth exponent k of the clustering
mode vs �a� the rescaled wave number kls and vs �b� log�kls� as
predicted from the complete linear stability analysis of a HCS �5�
�the thick line� and from the reduced Eq. �19� �the thin line�. The
physical �not rescaled� units are used, and the parameters are 	=2
and kcrls=100. At kls�1 the isobaric growth rate �19� underesti-
mates the actual growth rate, but in the region of kls�1 excellent
agreement between the two results is observed.
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can drop the diffusion term in Eq. �19�. This approximation
is valid as long as the solution remains large-scale. At
the level of linear stability analysis this �intermediate-
wavelength� approximation is fully justified. Here Eq. �28�
becomes ̂k�1, and one is interested in the nonlinear devel-
opment of the growing perturbations. With the diffusion term
dropped we obtain

�w

��
= − 1 + w�w� . �31�

This nonlinear integro-differential evolution equation is ex-
actly soluble for any initial data w�m ,0�. The complete so-
lution is presented below. The main result here is that, for
any inhomogeneous initial condition, the solution of Eq. �31�
develops a zero w �hence an infinite density� in a finite time.
Let us first discuss the properties of the solution in a close
vicinity of the singularity w→0. In the leading order we can
neglect the integral term in Eq. �31� and obtain �w /��=−1,
so that w�m ,��= w̃�m�−�, where w̃�m� is a smooth function.
The singularity occurs in the Lagrangian point m0 that cor-
responds to the minimum of w̃�m�. The leading order behav-
ior of the �rescaled� gas density near the singularity is de-
scribed by the following equation:

��m,�� = 	�c − � +
1

2

d2w̃

dm2 �m0��m − m0�2
−2

, �32�

where the time of singularity �c= w̃�m0�. The singularity
structure, as described by Eq. �32�, coincides with that ex-
hibited by a family of exact solutions of the full set of ideal
hydrodynamic equations �that is, Eqs. �2�–�4� without the
viscous and heat diffusion terms�, reported in Refs. �17,18�.
At �=�c the density blows up as ��m ,�c���m−m0�−4. Going
back to the Eulerian coordinate, we obtain a finite-mass den-
sity blowup ��x ,�c���x−x0�−4/5, where x0 is the Eulerian co-
ordinate of the singularity. We refer the reader to Ref. �18�
for a detailed analysis of the structure of this singularity, as
observed in the gas density, temperature, and velocity. Nota-
bly, the pressure field does not have any singularity in the
exact solutions �17,18�, and is approximately constant in a
narrow region around the density singularity. That is, the
density blowup, as featured by the exact solutions of ideal
granular hydrodynamics �17,18�, locally obeys an isobaric
scenario, as was noticed in Ref. �18�. This provides the rea-
son why the same type of singularity appears in our reduced
low Mach number theory.

Now we present a complete solution of Eq. �31�. First, we
obtain a closed evolution equation for the �necessarily posi-
tive� quantity ����= �w�m ,��� by integrating the both sides of
Eq. �31� over m from 0 to L:

d����
d�

= − 1 + �2. �33�

We consider the solution of this equation with the initial
condition

�0 = �w�m,0�� = ���m,0�−1/2� � 1.

The solution can be written as

���� =
�0 − tanh���

1 − �0 tanh���
. �34�

Now we can rewrite Eq. �31� as

�w

��
− ����w�m,�� = − 1, �35�

where ���� is given by Eq. �34�. Equation �35� is easily
soluble:

w�m,�� =
w�m,0� + �0�cosh��� − 1� − sinh���

cosh��� − �0 sinh���
. �36�

The presence of the factor �0�cosh���−1�−sinh��� in the nu-
merator of Eq. �36� causes, for any �nonconstant� initial data
w�m ,0�, a singularity w→0 in a finite time. The singularity
occurs at the Lagrangian point m0 where the function
w�m ,0� has its minimum, at time

�c = ln	�w + ��w2 + 1 − �0
2�1/2

1 − �0

 �37�

where �w�w�m0 ,0�−�0. Note that �w= �1 /L�0
L�w�m0 ,0�

−w�m ,���dm�0.
Now we compute the �rescaled� pressure p��� from Eq.

�20� �note that the right-hand side is simply ���� given by
Eq. �34��,

p��� = �cosh � − �0 sinh ��2	, �38�

and use this result in Eq. �21� for the rescaled physical time:

t = 	�
0

� d��

�cosh �� − �0 sinh ���	 . �39�

For 	=2 �a 2D gas of disks� this integral is elementary, and
the result is

t =
2

coth � − �0
. �40�

Now we can express � through t,

� = arccoth�2

t
+ �0� �41�

and rewrite Eqs. �36� and �38� �for 	=2� as

w�m,t� =
1

2
��w�m,0� − �0��4 + 4�0t − �1 − �0

2�t

+ 2�0 − �1 − �0
2�t� �42�

and

p = 	1 + �0t − �1 − �0
2�

t2

4

−2

. �43�

So, the solution for 	=2 is surprisingly simple. We recall
that, in view of the chosen rescaling, the initial condition
w�m ,0� must obey �w2�m ,0��=1. To return to the HCS and
Haff’s law in Eqs. �42� and �43� one should put there
w�m ,0�=�0=1. Equation �43� shows that Haff’s law is an
upper bound for the thermal energy loss rate: any deviation
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from homogeneity brings about �0�1 and a slower thermal
energy decay.

Let us note that the solution �34� for ���� vanishes at �*
= �1 /2�ln��1+�0� / �1−�0�� and becomes negative at larger �.
This is in apparent contradiction with the positivity of w that
dictates ����= �w�m ,����0. The contradiction is resolved by
noting that �* is always greater than the singularity time �c,
beyond which the solution does not apply. �To see that �c
��* one can use, in Eq. �37�, that �w+ ��w2+1−�0

2�1/2

� �1−�0
2�1/2 for any �w�0.� Similarly, the pressure as pre-

dicted by Eq. �38� or Eq. �43� would start increasing at some
time. At physically meaningful times ���c, however, we
have �����0, and the pressure always decreases in accord
with Eq. �20�.

As a simple illustration of our solution �36�, let us
choose the following initial condition: w�m ,0�= �1
+� cos�2�m /L��1/2, 0���1. In this case

� =
1

�
	�1 − �E� 2�

� − 1
� + �� + 1E� 2�

� + 1
�
 ,

where E�¯� is the complete elliptic integral of the second
kind; see, e.g., �30�. Figure 2�a� shows, at different times, the
rescaled inverse density 1 /��m ,��, as obtained from Eq.
�36�, for �=0.1 and L=100. Figure 2�b� depicts, at the same
times, the rescaled Eulerian coordinate x=0

mw2�m� ,��dm�
versus the Lagrangian coordinate m. Figure 2�c� shows the

rescaled inverse density in the rescaled Eulerian coordinates
and illustrates the emergence of the cusp density singularity
at x=L /2. The inverse density behaves like �m−m0�4 at
small m−m0 in the Lagrangian coordinate, and like �x
−x0�4/5 at small x−x0 in the Eulerian coordinate. This simple
example is instructive as, for ��1, this initial condition cor-
responds to a small single-mode density perturbation, so the
initial evolution is describable by the linear theory.

VI. HEAT DIFFUSION ARRESTS THE DENSITY BLOWUP

A central result of this work is in that, no matter how
small initially, the heat diffusion term in Eq. �19� arrests the
density blowup. An emerging balance of the inelastic cooling
and heat diffusion leads to existence of steady state solutions
of Eq. �19�. These solutions describe previously unknown
cooling states of the granular gas, where the �inhomoge-
neous� density profile is time-independent, while the �homo-
geneous� pressure continues to decay with time. We found
that, in our rescaled variables, the density profile of the in-
homogeneous cooling state is uniquely defined by the param-
eter L. For sufficiently large values of the rescaled length-
mass, L�1, the maximum gas density of the cooling state is
exponentially large in L. In the low Mach number theory,
considered in this work, the inhomogeneous cooling states
represent global attractors, as they develop for any inhomo-
geneous initial conditions. Finally, the inhomogeneous cool-
ing states represent exact solutions of the complete, unre-
duced set of hydrodynamic equations �2�–�4�.

A. Steady-state density profiles

Steady-state solutions of Eq. �19� are described by the
equation

d2w

dm2 = w − �w�w2. �44�

Notice that, although obtained from our reduced, low Mach
number theory, Eq. �44� also follows from the full set of
hydrodynamic equations �2�–�4�, if one assumes a homoge-
neous pressure and zero fluid velocity, and transforms to the
Lagrangian coordinates.

Equation �44� is defined on the interval 0�m�L, at the
ends of which we demand either periodic or no-flux �zero
first derivative� BCs. The solutions we are interested in must
obey the conservation law �22�. To get rid of the �a priori
unknown� factor �w�, we introduce a new variable

f�m� = �w�w�m� �45�

and obtain

d2f

dm2 − f + f2 = 0. �46�

Once f is found, one can restore w via

w =
f

��f�
. �47�

The conservation law �22� enforces a normalization condi-
tion
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FIG. 2. Density history of a freely cooling gas of inelastic hard
disks in a 2D channel in the zero-heat-diffusion limit. The rescaled
initial density ��m ,0�= �1+0.1 cos�2�m /L��−1. The rescaled sys-
tem length/mass L=100. �a� Rescaled inverse density of the gas,
1 /�, vs the Lagrangian mass coordinate m at times �=0,1.5,2.5
and the time of singularity �c�2.8755. �b� Rescaled Eulerian coor-
dinate x vs m at the same times. �c� 1 /� vs x at the same times. The
sequence of curves is self-explanatory.
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�f2� = �f� �48�

that, in virtue of Eq. �46�, is obeyed automatically for the
periodic or no-flux BCs.

Equation �46� has appeared in numerous applications and
its solutions are well known. It is convenient to interpret f as
a coordinate of a Newtonian particle of unit mass, moving in
a potential U�f�= f3 /3− f2 /2. The “total energy” E is con-
served:

E =
1

2
� df

dm
�2

+
f3

3
−

f3

2
. �49�

For the bounded �spatially oscillating� solutions, −1 /6�E
�0, we can write

f3

3
−

f2

2
− E =

�f − a��f − b��f − c�
3

, �50�

where a�b�c are the real roots of the cubic polynomial.
Then the bounded solutions of Eq. �46� can be written as

f�m� = c + �a − c� dn2��a − c

6
m,s� , �51�

where

s =
a − b

a − c
, �52�

and dn is one of the Jacobi elliptic functions; see, e.g. �30�.
There are two limits when Eq. �51� simplifies. In the limit
of E=−1 /6+�E, 0��E�1, the solution, f�m�=1
+�2�Ecos m, corresponds to a small-amplitude sinusoidal
modulation of the HCS w�m�=1. In the limit of E→0, we
have a=3 /2 and b=c=0, so that

f�m,E → 0� =
3

2
dn2�m

2
,1� =

3

2
cosh−2�m

2
� , �53�

Using Eqs. �47� and �51�, we rewrite the steady state so-
lutions in terms of w�m�:

w�m� =

c + �a − c�dn2��a − c

6
m,s�

�c + �a − c�
E�s�
K�s�

, �54�

where K�s� is the complete elliptic integral of the first kind.
The Lagrangian spatial period, or wavelength, of the solution
�54� is

� =� 24

a − c
K�s� . �55�

In the limit of s→0 �or E→−1 /6�, the wavelength �55�
reaches its minimum value 2�. If the rescaled channel length
L is less than 2� �for the periodic BCs�, or less than � �for
the no-flux BCs�, the only possible steady state is the con-
stant density state w�m�=1 corresponding to Haff’s law. This
result is in full agreement with the linear stability analysis of
Eq. �19�; see Eq. �28�. When L exceeds 2� �for the periodic

BCs� or � �for the no-flux BCs�, the HCS bifurcates into an
inhomogeneous steady state �54�. In general, the rescaled
channel length-mass L must be equal, by virtue of the BCs,
to an integer number of � �for the periodic BCs�, or to an
integer number of � /2 �for the no-flux BCs�. For sufficiently
large value of L, therefore, a whole family of steady state
density profiles exists. Which of the steady state solutions is
selected by the dynamics of Eq. �19�?

B. Selected steady-state solutions: The inhomogeneous cooling
states

We performed extensive numerical simulations with Eq.
�19�, using a specially developed numerical scheme de-
scribed in Appendix A. Both periodic and no-flux BCs were
used. We observed that, when 0�L�2� �for the periodic
BCs� or 0�L�� �for the no-flux conditions�, the HCS ap-
pears, as expected. When L exceeds 2� �for the periodic
BCs�, a weakly inhomogeneous steady state density profile
sets in. As L increases further, the weakly inhomogeneous
states develops into a strongly inhomogeneous states. The
simulations showed that the rescaled length-mass of the gas,
L, uniquely selects the emerging steady state density profile,
while the initial w profile does not play any role in the se-
lection. For a given L the dynamics always selects, out of the
family of steady state solutions �54�, the one with the maxi-
mum possible wavelength �:

L = �� for the periodic BCs

�/2 for the no − flux BCs.
� �56�

Snapshots from a typical simulation �one of many that we
performed� for the periodic BCs are shown in Fig. 3. The
initial condition is this example was

FIG. 3. Numerical w profiles at times �=0, 2, 4, and 72, and
1 /w profile at time �=72, for L=50 when starting from the initial
condition �57�. The two panels for �=72 also show, by circles, the
single hole asymptotes �60� and �61�, respectively.
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w2�m,0� = 1 − 0.1 cos�2�m/L� − 0.15 sin�2�m/L�

+ 0.2 cos�4�m/L� − 0.05 sin�4�m/L� . �57�

The rescaled system length-mass L=50 was sufficiently
large to fit in steady state solutions with several oscillations.
Nevertheless, the dynamics selected the solution with the
spatial period equal to the rescaled system length L.

Figures 4–6 depict our analytical solutions �54� in the
Lagrangian coordinate, and the corresponding density pro-
files in the Eulerian coordinates, for three different values of
the parameter L. Here we assumed the periodic BCs and
�arbitrarily� chose the position of the minimum of w�m� to be
in the middle of the channel.

The maximum �rescaled� gas density versus the rescaled
channel length L, predicted by Eqs. �54� and �55�, is shown
in Fig. 7. This dependence can serve as a bifurcation diagram
of the system. One observes, at L�2�, a supercritical bifur-
cation from the HCS to an ICS.

One can see that, as the parameter L increases, the maxi-
mum gas density in the cluster grows very fast �note that Fig.
6�b� shows the density in logarithmic scale�. Let us consider
the asymptotic form of the solution at L�1 in some detail.
The density maximum in this case is exponentially large
�31�. This is due to the behavior of the s→1 asymptotics of
the steady-state solution; see Eq. �53�. In this case the “en-
ergy” E is very small, and can be expressed through the
rescaled system length as �E � �72 exp�−L�. The maximum
value of w�m� is

wmax ��3L
8

. �58�

To obtain the minimum value of w�m� �that corresponds to
the maximum value of the density�, it is convenient to use
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FIG. 4. Inhomogeneous cooling state for L=7.025. �a� Lagrang-
ian steady state solution w�m� as predicted by Eq. �54�. �b� Rescaled
steady state gas density � vs the rescaled Eulerian coordinate x.
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FIG. 5. Same as in Fig. 4, but for L=8.886.
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FIG. 6. Same as in Fig. 4, but for L=19.869. Notice the loga-
rithmic scale in �b�.
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FIG. 7. Bifurcation diagram of the freely cooling granular gas in
a channel. Shown is the maximum �rescaled� steady state density of
the gas vs the rescaled channel length L, predicted by Eqs. �54� and
�55�. Panel �b� focuses on a vicinity of the supercritical bifurcation
point L=2�.
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the exact relation wmin=b /��f� and calculate the asymptotic
value of b at �E��1, or L�1. The result is

wmin � �24Le−L/2. �59�

By virtue of Eq. �53�, the asymptotics of the steady-state
solution �54� at �m��L /2 is

w0�m� ��3L
8

cosh−2�m

2
� , �60�

where, for convenience, we have written the solution on the
interval −L /2�m�L /2 and used the approximate equality
�f��6 /L. To calculate the asymptotics of Eq. �54� at �m �
�1, we can deal directly with Eq. �46� and neglect the f2

term. The solution of the resulting elementary equation is a
linear combination of em and e−m. The two arbitrary con-
stants can be determined from the two conditions at �m�
=L /2: df /dm=0 and w0� f /��f�=wmin, where wmin is given
by Eq. �59�. We obtain

w0�m� � �24Le−L/2 cosh�L/2 − �m��, �m� � 1. �61�

Note that the asymptotes �60� and �61� coincide in their com-
mon region 1� �m��L /2, where each of them yields

w0�m� � �6Le−m. �62�

Note that �w0�m����6 /L is determined by the asymptote
�60�. We compared the asymptotes �60� and �61� with the
numerical solution, shown in Fig. 3, at a late time �=72.
Employing the periodic BCs, we shifted the numerical solu-
tion in m so that the maximum of w�m ,�=72� is at m=0.
One can see that the agreement is excellent.

As higher w corresponds to a lower gas density, the region
of the maximum of w corresponds to a hole in the density.
Therefore, we will call the approximate solution, fully deter-
mined by Eqs. �60� and �61�, the hole solution. The rescaled
steady-state gas density, in the limit of L�1, is

��m� �
8

3L
cosh4�m

2
�, �m� � L/2 �63�

and

��m� �
eL

24L
cosh−2�L

2
− �m��, �m� � 1, �64�

and the maximum and minimum density values are

�max �
eL

24L
, �min �

8

3L
. �65�

Note that Eqs. �58�–�65� work very well already for moder-
ate values of L. For the dilute hydrodynamics to be still valid
in the gas density peak region, we must demand that the peak
density be much less than the close packing density. In view
of the exponential growth of the maximum density with the
parameter L, see Eq. �65�, this leads to a stringent condition:

�0�d � 24Le−L.

If this condition is not fulfilled, the dilute theory will break
down, and the attempted density blowup will be regularized
by close-packing effects.

The general form of the steady-state density profile in the
Eulerian coordinates is quite cumbersome. However, its
asymptotic form at L�1 that corresponds to the Lagrangian
profiles �60� and �61� is both elementary and instructive. For
Eq. �60� one finds, after some algebra,

w0�x� =�3L
2

cos	1

3
arccos�1 −

8x2

L2 �
 −�3L
8

.

�66�

This asymptotics is valid at e−L�1−2�x� /L, that is almost
over the whole channel �x��L /2 except in a narrow region.
This region, however, includes a significant part of the gas
mass, as evidenced by the size of this region in the Lagrang-
ian coordinate and by the nonintegrable diverging power-law
asymptotics of the gas density:

��x� �
1

L − 2�x�
at e−L � 1 −

2�x�
L

� 1. �67�

There is of course no actual density divergence here, as Eq.
�67� does not hold close to the end points: at 1−2�x� /L
�e−L. To find the density profile in this exponentially nar-
row region, we express the relation between x and m as

x = �
0

m

w0
2�m��dm� = �

0

L/2

w0
2�m��dm� − �

m

L/2

w0
2�m��dm�

= L/2 − �
m

L/2

w0
2�m��dm�. �68�

This form is convenient in the vicinity of m=L /2. The case
of m=−L /2 can be treated similarly, and the expressions that
follow are valid in both cases. For �m��1 Eqs. �68� and �61�
yield

�x� �
L
2

− 6Le−L�L − 2�m� + sinh�L − 2�m��� . �69�

Equations �64� and �69� determine, in a parametric form and
in elementary functions, the density profile in the region suf-
ficiently far from the density minimum. Still simpler results
can be obtained in the following two subregions. The first is
the common region L /2− �m��1 but �m��1. The asymptot-
ics of Eqs. �64� and �69� at L /2− �m��1 become �
=e2�m� / �6L�, and �x��L /2−3Le−2�m�, therefore �= �L
−2�x��−1 which coincides with the asymptotics �67� of Eq.
�66�. The second limit corresponds to L /2− �m��1. Here Eq.
�64� becomes

��m� �
eL

24L	1 − �L
2

− �m��2
 ,

whereas Eq. �69� yields �x�=L /2−24Le−L�L /2− �m��. The
resulting Eulerian density profile is
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��x� �
eL

24L	1 − � eL

24L�2�L
2

− �x��2
 . �70�

C. Energy decay for the ICSs

Now let us consider the evolution of the �rescaled� total
energy of the gas,

Etot�t� = �
0

L � p

	 − 1
+

�v2

2
�dx , �71�

where the first term under the integral is the thermal energy
density and the second term is the macroscopic kinetic en-
ergy density. For the low Mach number flow, that we are
dealing with in this work, the first term is almost independent
of x, while the second term is negligible. As a result, the
energy decays, in the leading order, in the same way as the
pressure. The pressure decay p��� is described by Eq. �20�,
whereas to go back to the physical time we use Eq. �21�. For
our steady state solutions we arrive at a generalized Haff’s
law

p�t� =
1

�1 + �w�t�2 . �72�

As �w�� �w2�1/2=1, the energy decay for the ICS is always
slower than for the HCS, see Eq. �25�. A more explicit form
of the generalized Haff’s law �72� is

p�t� = 	1 + t�c + �a − c�
E�s�
K�s�


−2

. �73�

Now we consider the particular case of the single hole
solution w0�m�. As �w0�m����6 /L, we obtain for the pres-
sure �in the physical units�

p��� = p0 exp�− 2�6	L−1/2�� . �74�

Using Eq. �21�, we find the original �physical� time t in terms
of � �again, in the physical units�:

t =
�6L�1/2

3
�0
1/2p0

1/2 �e�6	L−1/2� − 1� . �75�

This yields a generalized Haff’s law

p�t� =
p0

�1 + t/t̃c�2
�76�

with a characteristic cooling time

t̃c =
�6L�1/2

3
�0
1/2p0

1/2 . �77�

As L�1, the cooling time t̃c is much longer than the cooling
time tc corresponding to the HCS:

tc

t̃c

= � 6

L�1/2
� 1. �78�

D. Relaxation to the single hole state

Here we study the late-time dynamics of relaxation of the
cooling gas towards the single hole state: the cooling state
observed for L�1, that is, for lcr�L� ls. We put w�m ,��
=w0�m�+w1�m ,��, where w0�m� is the single hole asymptot-
ics �60�, and linearize Eq. �19� with respect to the small
correction w1. We obtain

w0
�w1

��
= �2w0�w0� − 1�w1 + �w1�w0

2 +
�2w1

�m2 . �79�

In the language of the linear stability analysis, the conserva-
tion law �22� becomes �w0�m�w1�m ,���=0. Integrating Eq.
�79� over the box, one can see that, once this condition holds
at �=0, it continues to hold at ��0.

As will become clear shortly, a natural complete set of
eigenfunctions for the linear equation �79� is provided by the
following eigenvalue problem:

yn��m� + �− 1 + �nw0�m��yn�m� = 0 �80�

for the eigenfunctions yn�m� obeying the BCs yn����=0.
�Here we have moved the boundaries to infinity which is
accurate with an exponential accuracy in the large parameter
L�1.� Equation �80� can be viewed as a stationary
Shrödinger equation �with �=1� for a particle with mass 1 /2
and a fixed energy −1 in the Pöschl-Teller potential well; see,
e.g., Ref. �33�. The depth of the well is determined by the
eigenvalues �n. The spectrum of this problem is discrete:

�n =
�n + 2��n + 3�

�6L�1/2 , n = 0,1,2,3, . . . . �81�

For even values of n one obtains even eigenfunctions:

yn
even�m� = An cosh2n+3�m

2
�

�2F1	n +
1

2
,n +

5

2
;
1

2
;− sinh2�m

2
�
 , �82�

whereas for odd values of n one obtains odd eigenfunctions:

yn
odd�m� = Bn cosh2n+4�m

2
�sinh�m

2
�

�2F1	n +
3

2
,n +

7

2
;
3

2
;− sinh2�m

2
�
 . �83�

Here 2F1�¯� is the hypergeometric function, and An and Bn

are constants that we fix using the orthonormality conditions

�
−�

+�

yk�m�yn�m�w0�m�dm = �kn, �84�

the Kroneker delta. The fundamental mode y0�m� is even, it
is proportional to w0�m�:

y0�m� = C0w0�m� = �75/2L�1/4 cosh−2�m/2� ,

where C0=51/26−1/4L−3/4. The next mode is the first odd
eigenfunction y1�m�, proportional to dw0�m� /dm:
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y1�m� = −
31/4�35 cosh−2�m/2�tanh�m/2�

27/4L1/4 .

The next one is the second even eigenfunction

y2�m� = −
33/4�5�3 cosh m − 4�cosh−4�m/2�

27/4L1/4 ,

and so on. Let us expand w1�m ,�� in this complete set of
eigenfunctions:

w1�m,�� = �
n=0

�

an���yn�m� ,

substitute this expansion in Eq. �79�, multiply the resulting
equation by yk�m�, k=0,1 ,2 , . . . and integrate over m from
−� to �. Using Eq. �80�, we arrive at the following equations
for the time-dependent amplitudes ak���:

dak���
d�

= − kak��� for k � 0 �85�

and

da0���
d�

= 2�w0�a0��� +
1

C0
�
n=1

�

a2n����y2n� . �86�

Here

k = �k − 2�w0� =
�k − 1��k + 6�

�6L�1/2 , k = 1,2, . . . , �87�

and we have used the equality �0= �w0�. The amplitude equa-
tions �85� and �86�, together with the initial conditions ak�0�,
k=0,1 ,2 , . . ., enable us to solve the initial value problem for
the evolution of the small perturbation w1�m ,��. Equations
�85� show that each of the odd and even modes k
=1,2 ,3 , . . . evolve independently of other modes: The k=1
mode has a zero decay rate �which is expected, as it is a
translational mode�, while the higher modes decay exponen-
tially in time �:

ak��� = ak�0�exp�− k��, k = 1,2,3, . . . . �88�

The k=0 mode behaves quite differently from other modes,
as it is affected by the rest of the even modes of the system;
see Eq. �86�. The solution of Eq. �86� is

a0��� = 	a0�0� +
1

C0
�
n=1

�
a2n�0��y2n�

�2n

exp�2�w0���

−
1

C0
�
n=1

�
a2n�0��y2n�

�2n
exp�− 2n�� . �89�

Now we prove that the term in the square brackets vanishes.
At �=0 the conservation law �22� can be written as

�w0�m��
n=0

�

a2n�0�y2n�m�� = 0,

which yields

a0�0� +
1

C0
�
n=0

�

a2n�0��w0y2n� = 0. �90�

By virtue of the identity �y2n�=�2n�w0y2n� �which readily
follows from Eq. �80��, the left side of Eq. �90� coincides
with the term in the square brackets in Eq. �89�. Therefore,
the final result for a0��� is

a0��� = −
1

C0
�
n=1

�
a2n�0��y2n�

�2n
exp�− 2n�� . �91�

a0��� can behave nonmonotonically at short times. However,
it always decays at long times, and the dominant decay rate,
at ��L1/2, is 2.

Figures 8 and 9 present a comparison of the linear stabil-

FIG. 8. Difference w1�m ,�� between the time-dependent solu-
tion and the single-hole steady state asymptotics EQ. �60� at differ-
ent �late� times for the simulation shown in Fig. 3.

FIG. 9. Testing the linear stability analysis of the single hole
solution. The circles show, in the logarithmic scale, maxm�w1�m ,���
�see Fig. 8� vs time �. The solid line depicts our theoretical predic-
tion for long times, when the relaxation is dominated by the mode
y2, so that maxm�w1�=c0 exp�−2��, where 2=8 /�6L�0.462. The
adjustable parameter c0=33.5.
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ity analysis with the simulation shown in Fig. 3. Figure 8
shows, at late times, the deviation of the numerical solution
from the theoretical single-hole steady state asymptotics �60�
for the simulation shown in Fig. 3. As time proceeds, the
deviation tends to zero as expected. Figure 9 compares the
numerically observed decay rate of the deviation with the
analytical result �87� for the decay rate 2 that dominates at
late times, and very good agreement is observed.

Using Eqs. �75� and �87�, we can see that the exponential
decay in � of each of the eigenmodes k=1,2 , . . ., see Eq.
�88�, becomes a power-law decay in the physical time:

ak�t� = ak�0��1 +
t

t̃c
�−��k−1��k+6��/6	

, k = 1,2, . . . ,

with t̃c from Eq. �77�. The zero mode dynamics �91� can be
represented as a superposition of terms, each of which de-
cays as a power law in the physical time. Therefore, the
mismatch w�m , t�−w0�m� between the time-dependent solu-
tion w�m , t� and the single hole solution w0�m� decays, at
long times, as ��t / t̃c�−4/�3	�.

Before concluding this section we note that the k=1 mode
turned out to be marginally stable because we neglected cor-
rections exponentially small with respect to the rescaled sys-
tem length L. In a more accurate treatment this mode would
cease to be a translational mode and acquire a nonzero �al-
though exponentially small� damping rate in time �. This
would lead to a power law decay of this mode in time t with
a power exponent that is exponentially small in L.

VII. COARSENING DYNAMICS AND STATISTICS
OF HOLES

Numerical simulations with Eq. �19� show that, for a suf-
ficiently large rescaled length-mass of the system, L�1,
many peaks of w �hence holes of the gas density� nucleate in
the system �31�. The nucleation stage, as observed numeri-
cally, is shown in the upper left panel of Fig. 10. The initial
condition w�m ,�=0� simulated white noise, as we chose
w2�m ,�=0� to be equal to 1 plus a sum of a very large
number of Fourier harmonics with �very small� random am-
plitudes drawn from a uniform distribution. As evidenced by
Fig. 10, the further evolution of the holes resembles Ostwald
ripening �34�. At this stage nucleation of new holes does not
occur anymore, and a competition between the holes begins.
Underdense holes release their material into the environment
and become more pronounced �even less dense�, while holes
with more material continue to suck the material in until they
disappear. At some stage the holes which gas density previ-
ously decreased, reverse the trend and begin to densify. At
the end of this coarsening process only one hole �that was the
least dense in the beginning� remains and forms the single-
hole solution �60� and �61� �32�. Clearly, the holes compete
nonlocally via the spatial averaging term of Eq. �19�.

Can one build upon the analogy with Ostwald ripening
and develop an asymptotic theory of the hole coarsening
dynamics? Consider a late stage of the dynamics when there
are N holes, located sufficiently far from each other, and
centered at points mi, i=1,2 , . . . ,N. A simple theory assumes

that the spatial shape of each hole coincides with that of the
limiting steady state asymptotics �60�, but with its own am-
plitude Ai�t� that depends on time. The latter assumption is
based on a remarkable fact that, up to exponentially small
corrections, Eq. �19� admits the following ansatz:

w�m,�� = �
i=1

N

Ai���cosh−2�m − mi

2
� . �92�

Plugging it into Eq. �19� and neglecting exponentially small
overlap terms, we find that the equation is satisfied once the
following N relations hold:

Ȧi��� = S���Ai��� −
3

2
, i = 1,2, . . . ,N . �93�

Here

S��� =
4

L�
i=1

N

Ai��� � �w�m,��� . �94�

Once all the initial amplitudes Ai�0� of the holes are known,
the effective dynamical system �93� provides a complete de-
scription of the problem. The conservation law �22� of the
original Eq. �19� becomes an integral of motion of the dy-
namical system �93�:

�
i=1

N

Ai
2��� =

3L
8

= const. �95�

Equations �93�–�95� are similar to �the discrete version of�
the Lifshitz-Slyozov theory of Ostwald ripening �35�, and
their properties give a qualitative explanation to the proper-
ties of coarsening observed in Fig. 10. Indeed, the holes with
amplitudes greater than the �time-dependent� critical ampli-
tude Acr���= �3 /2�S−1��� grow in the amplitude, while holes
with amplitudes less than Acr��� decrease their amplitude and
disappear. As Acr��� grows with time, the holes that previ-

FIG. 10. Nucleation and coarsening of holes when starting from
a small amplitude “white noise” density perturbation around w=1.
Shown is a small fragment of the system of rescaled length-mass
L=106 at indicated times.
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ously grew in the amplitude begin to decrease their ampli-
tude and finally disappear.

A natural further step is to assume N�1, treat the hole
amplitude as a continuous variable and deal with the prob-
ability distribution F�A ,�� of the hole amplitudes A at time �.
The corresponding theory can be formulated in the spirit of
the Lifshitz-Slyozov theory of Ostwald ripening, and we
present it in Appendix B. How does this theory compare with
numerical simulations? Figure 11 presents some quantitative
characterization of the hole coarsening dynamics for the nu-
merical simulation shown in Fig. 10. Shown are the time
histories of �w� �a�, of the total number of holes in the system
N �b�, and of the sum of the hole amplitudes squared �c� for
the simulation shown in Fig. 10. �Because of the noisy initial
condition, it takes some time for well-defined holes to nucle-
ate. We started the hole count at the time when the total
number of the local maxima of w�m� became equal, for the
first time, to the total number of m intervals where w was
less than a prescribed small threshold 10−4.� One can imme-
diately see on the lower panel of Fig. 11 that the conserva-
tion law �95� is not obeyed in this simulation. It is not sur-
prising, therefore, that other quantitative predictions of our
Lifshitz-Slyozov-type theory, see Appendix B, are also not
supported by this simulation. Most directly, the shape of an
individual hole does not agree with that assumed in the an-
satz �92�. The holes observed in this “generic” simulation
have a more complicated structure, and are not characteriz-
able by a single parameter such as Ai���.

It is therefore remarkable, that the ansatz �92� does de-
scribe a stable regime of coarsening. That is, if one starts the
simulation, at �=0, with an ensemble of holes with different
amplitudes, describable by the ansatz �92�, the ansatz contin-
ues to hold and, moreover, the system approaches the simple
scaling regime predicted by our theory of Lifshitz-Slyozov
type. The results of one such simulation are presented in

Figs. 12–14. Here the holes were placed at a �sufficiently
large� equal distance from each other, and the initial hole
amplitudes Ai were chosen randomly from a positive half-
Gaussian with variance 1. One can see a hole coarsening
process in Fig. 12: holes with a larger amplitude �that is, with
less gas� grow �that is, loose gas� at the expense of holes
with a smaller amplitude. The time histories of �w� and the
number of holes N, presented in Fig. 13, resemble those for
the previously described “generic” simulation. The behavior

FIG. 11. �a� Time histories of �w�, �b� the number of holes N,
and �c� the sum of the hole amplitudes squared for the “generic”
simulation �starting from a small amplitude noise� shown in Fig. 10.

FIG. 12. Coarsening of holes when starting from the ansatz Eq.
�92� with N0=2�104 holes. The initial hole amplitudes Ai are ran-
domly distributed according to a �positive� half-Gaussian with vari-
ance 1. This distribution is normalized by the condition �i=1

N0 Ai
2

=3L /8. Shown is a small fragment of the system of rescaled length-
mass L=106.

FIG. 13. �a� Time histories of �w�, �b� the number of holes N,
and �c� the sum of the hole amplitudes squared for the simulation
that started from the ansatz Eq. �92� and is shown in Fig. 12. The-
oretical prediction Eq. �95� for �Ai

2 is 3L /8=375 000 which agrees
with the simulation within a 1% error.
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of the sum �1
NAi

2 is, however, dramatically different: here the
conservation law �95� is obeyed with a 1% accuracy. A closer
inspection of the time histories of �w� and N��� �see Fig. 14�
shows that, at late times, these quantities agree with the the-
oretical predictions from Eqs. �B5� �with �1=1� and �B10�,
presented in Appendix B. Indeed, by using only one adjust-
able parameter, the time shift � f, related to the time of ap-
proaching the scaling regime, we obtained good agreement
for the two different quantities. We also checked �not shown�
that, at different times, the shapes of individual holes are
very well described by the cosh−2 profile assumed in the
ansatz �92�.

VIII. SUMMARY AND DISCUSSION

We have developed a nonlinear theory of low Mach num-
ber channel flows of freely cooling dilute granular gases with
nearly elastic particle collisions. We focused on the case
when the sound travel time through the system is much
shorter than the cooling time and the heat diffusion time.
Then, after a brief transient, the gas pressure becomes �al-
most� uniform in space. This makes it possible to reduce the
granular hydrodynamic equations, in Lagrangian coordi-
nates, to a single nonlinear and nonlocal equation of a
reaction-diffusion type. With heat diffusion neglected, the
reduced equation becomes integrable, and any inhomoge-
neous initial condition produces a finite-time density blowup.
The density blowup has the same universal features at sin-
gularity as those exhibited by a family of exact solutions of
the full set of ideal hydrodynamic equations �17,18�. The

density blowup, however, is arrested by the heat diffusion.
As a result a novel, inhomogeneous cooling state �ICS� of
the gas emerges which has a time-independent density pro-
file. For channels of an intermediate length that we consid-
ered, the ICS represents a global attractor of the system.
Both its structure, and the late-time relaxation towards it are
determined by a single dimensionless parameter L which is
of the order of the ratio of the channel length to the critical
length predicted by the linear theory of instability of the
homogeneous cooling state. The energy decay of the ICS
differs considerably from Haff’s law: the characteristic decay
time diverges with the size of the system as L1/2, see Eq.
�78�. At large L, the maximum density of the ICS grows
exponentially with L. Therefore, for sufficiently long chan-
nels �the rest of parameters being fixed�, the dilute gas as-
sumption breaks down, and close packed regions emerge.

For L�1 the cooling dynamics proceeds as a competition
between “holes.” This competition is quite similar to Ost-
wald ripening. In the simple case when the initial state con-
sists of N well separated holes �cosh−2�m /2�, the analogy
with Ostwald ripening becomes complete, as the “hole rip-
ening” statistics exhibits a simple dynamic scaling behavior
and is describable by a variant of the Lifshitz-Slyozov
theory. Here, in analogy with other phase ordering systems
with a conserved order parameter, the probability distribution
of the holes with respect to their amplitudes approaches, at
long times, the special �limiting� self-similar solution, that is
analytic at the edge of its �compact� support. However, for a
generic, noisy initial condition, the competing holes have a
more complicated structure than that described by the ansatz
�92�. This brings about a lack of simple dynamic scaling. A
theory of this regime has yet to be developed.

In the light of the above results, a nonlinear development
of the clustering instability of the HCS, for intermediate
channel lengths, is but a particular case of our low Mach
number theory. Ultimately, the instability transforms an �al-
most� homogeneous initial gas density profile into an inho-
mogeneous but time-independent density profile: the ICS de-
scribed above. For L�1 this transformation occurs through
an intermediate state with many holes �and many clusters�.

It would be interesting to investigate the ICSs, and relax-
ation toward them, in MD simulations. To directly test our
low Mach number theory, one should choose the MD simu-
lation parameters so as to guarantee the length scale separa-
tion lcr�L� ls assumed here. We stress that this hierarchy of
length scales demands nearly elastic particle collisions:
�1−r2�1. In addition, the channel length L should not be
too large so that the theoretically predicted maximum gas
density in the ICs is still small compared to the close packing
density of spheres.

It is worth noticing that, in all asymptotic cooling regimes
of an inhomogeneous gas that we have investigated, the en-
ergy decays slower than in the case of a HCS. Haff’s cooling
law, therefore, provides an upper bound on the energy decay
rate. In fact, this is a general theorem, universally valid for a
low Mach number flow. Indeed, according to Eq. �12�, the
logarithmic derivative of the pressure �and, therefore, of the
total energy� is proportional to −�w�. For a HCS �w�=1,
whereas for any ICS �w��1, by virtue of the Cauchy-
Schwarz inequality and the identity �w2�=1.

FIG. 14. Comparison of the time histories of �w� and N from
Fig. 13 with theoretical predictions. The solid line in �a� shows the
numerical results for 1 / �w� vs time �. The dashed line shows our
theoretical prediction for late times: �w�=1 / ��−� f�, where � f is an
adjustable parameter �in this simulation � f �23.9�. Plotted in �b� is
the numerical result for N−1/2 vs � �the solid line�, and the theoret-
ical prediction N−1/2���=�3 /L��−� f� with no additional adjustable
parameters �the dashed line�. Here �3 /L�1.73�10−3. The noise,
evident in �b� at late times, is due to a small number of holes at
those times.
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What can be said about the opposite, long-wavelength
limit, �� ls, where � is the characteristic length scale of the
initial perturbations? Although there has been some progress
in this case �12,13,17�, a complete understanding of the dy-
namics and structure of the flow is still lacking. It should be
possible to derive a different reduced model in that limit, and
see whether the popular “pressure instability scenario” �4� is
at work there. �It is clear that the pressure instability scenario
is irrelevant in the intermediate wavelength limit, considered
in the present paper.�

Note that the ICSs, that we have discovered here, are
exact solutions of the full set of granular hydrodynamic
equations �2�–�4� for a nearly elastic dilute gas, without any
reductions. Therefore, a question arises on whether the ICS
represents an attractor in the general case, including the long
wavelength limit. A complete �unreduced� linear stability
analysis around the “hole” asymptotics �60� could be the first
step in an attempt to answer this question. Such an analysis
can be complemented by numerical hydrodynamic simula-
tions of nonlinear cooling flows, so as to elucidate possible
effects of shock waves on the �nonlinear� stability of the ICS.

Does this work, limited to channel flows, have any rel-
evance to the shearing and clustering instability of a freely
cooling granular gas in fully multidimensional geometries?
To begin with, the low Mach number theory can be extended
to the higher dimensions, once the characteristic sound travel
distance ls is much larger than all system dimensions. This
extension should take into a proper account the flow vortic-
ity, in much the same way as it was done in Ref. �27� where
a two-dimensional low Mach number flow of an ideal gas,
driven by the heat diffusion, was investigated. Although not
very simple, such a reduced description �with the acoustic
modes eliminated� will be advantageous compared to the full
set of multidimensional hydrodynamic equations. Further-
more, the ICSs of the granular gas �that represent exact so-
lutions of the unreduced granular hydrodynamic equations�
may have multidimensional analogs. Finding these analogs,
and investigating their stability with respect to multidimen-
sional perturbations which have both potential, and solenoi-
dal velocity components, can be a natural next step in devel-
oping a more complete nonlinear theory of the shearing and
clustering instability. The channel flow theory developed
here �see also Refs. �12,13,17,18,20�� sets the ground for the
future work.
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APPENDIX A: NUMERICAL SCHEME

We employed the following implicit finite difference
scheme for a numerical solution of Eq. �19�:

wi
2 − ŵi

2

2��
= − wi + wi

2

�
i=1

n

wi

n
+ Dwi, �A1�

where �� is the time step, wi=w�mi ,�+���, ŵi=w�mi ,��. A
standard discretization Dwi of the diffusion term was used:
for the periodic BCs we put

Dwi =�
w2 − 2w1 + wn

h2 , i = 1

wi+1 − 2wi + wi−1

h2 , 1 � i � n

w1 − 2wn + wn−1

h2 , i = n ,
�

where h=L /n is the grid size. The approximation error of
this scheme is O���2� in �� and O�h3� in h. Note that the
scheme conserves exactly the discrete version of the conser-
vation law �22�, �wi���2�= �1 /n��i=1

n wi
2=1, once �wi�0�2�=1.

We solved the set of nonlinear algebraic equations �A1�
by an iteration procedure based on Newton’s method. To
obtain, after linearization, a standard cyclic tridiagonal sys-
tem, we used the values of wi, entering the sum �i

nwi, from
the previous iteration. We demanded that the residual �the
maximum of the absolute value of the difference between the
left- and right-hand sides of the equations after the iteration
process� be less then 10−13. Because of the finite residual,
this procedure conserved the mean square of w with an al-
most machine precision, but not exactly. Therefore, we en-
forced an even stricter conservation by adding, at each time
step, a constant c to the numerical solution wi found with the
iteration procedure. The value of c is determined as follows.
We represent the �yet unknown� corrected values w̄i as w̄i
=wi+c. Then

�w̄i
2� =

1

n
�
i=1

n

�wi
2 + 2cwi + c2� = �w2� + 2c�w� + c2.

Now we demand that the right-hand side be equal to 1. Ne-
glecting the c2 term, we find

c =
1 − �w2�

2�w�
.

We always obtained �c��10−14 in our computations. This
justifies neglecting the c2 term.

The typical set of parameters for the investigation of re-
laxation towards a stationary single hole asymptotics �60�
was L=50 and n=2.5�104, so h=2�10−3. In the hole
coarsening simulations we used L=106 and n=2.8�106, so
h�0.36. In all cases the time step was chosen to be ��=h2.

APPENDIX B: HOLE COARSENING IN THE SPIRIT
OF THE LIFSHITZ-SLYOZOV THEORY

Here we treat the hole amplitude �see Sec. VII� as a con-
tinuous variable and deal with the probability distribution
F�A ,�� of the hole amplitudes A at time �. The total number
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of holes N���=0
�F�A ,��dA�1. As there is no nucleation of

new holes and no hole mergers, the evolution of F�A ,�� is
described, in the spirit of the Lifshitz-Slyozov theory �35�,
by a continuity equation in the space of hole amplitudes:

�F

��
+

�

�A
	�SA −

3

2
�F
 = 0, �B1�

where

S��� =
4

L�0

�

AF�A,��dA �B2�

and

�
0

�

A2F�A,��dA =
3L
8

= const. �B3�

Equations similar to Eqs. �B1�–�B3� have appeared in the
context of the Lifshitz-Slyozov model of Ostwald ripening
�35� and its analogs for different transport mechanisms
�25,36–39�. In those systems one is usually interested in the
question of whether or not the probability distribution
F�A ,�� approaches, at late times, a self-similar shape. A
simple power counting in Eqs. �B1�–�B3� yields

F�A,�� =
L

4�3��A

�
� , �B4�

where �����0 is the �yet unknown� rescaled distribution,
and the coefficient L /4 is chosen for convenience. Using
Eqs. �B2� and �B3�, we obtain

S��� =
�1

�
and �2 =

3

2
, �B5�

respectively. Here �k is the kth moment of the rescaled dis-
tribution: �k=0

��k����d�. One can already see that the to-
tal number of holes N��� goes down as �−2, while both the

average hole amplitude Ā��� and the critical amplitude Acr���
grow linearly with �. The prefactors of these power laws will
be determined once ���� is found. Plugging Eq. �B4� and
the first of Eqs. �B5� into Eq. �B1� we obtain an ordinary
differential equation for ����:

	��1 − 1�� −
3

2

d�

d�
+ ��1 − 3�� = 0, �B6�

whose solution is elementary. As in other variants of the LS
theory, we obtain here a whole family of shape functions
��1

���, parametrized by the first moment �1. The solutions
exist, with finite moments, for 1��1��. For �1�1 the
solutions have finite support:

��1
��� = �B�1

	3

2
− ��1 − 1��
�3−�1�/��1−1�

if 0 � � � �m

0 if � � �m,
�

�B7�

where �m= �3 /2���1−1�−1. The constant B�1
can be deter-

mined from the second of Eqs. �B5� �that plays the role of a
normalization condition�:

B�1
= 22�1/��1−1�3−��1+1�/��1−1��1��1 + 1� .

This yields, for �1�1,

N��� =
L�1�1 + �1�

6�2 , Ā��� =

3� 2

�1 − 1
��

��1 − 1�2� 2�1

�1 − 1
� ,

Acr��� = �3��/�2�1� . �B8�

For 1��1�3, the solutions �B7� vanish at �=�m, whereas
for �1�3 they diverge at �=�m. As all the moments �k
remain finite, the diverging distributions are legitimate.

For �1=1 we obtain a limiting solution �1���
= �16 /9�exp�−4� /3� that has an infinite support 0����.
The self-similar probability distribution �B4� becomes

F�A,�� =
4L
9�3 exp�−

4A

3�
� . �B9�

In this case

N��� =
L

3�2 , Ā��� =
3�

4
, and Acr��� =

3�

2
. �B10�

These expressions also follow from Eqs. �B8� in the limit of
�1→1.

Figure 15 depict the rescaled distributions ��1
��� for four

values of the parameter �1. Selection of the “correct” self-
similar solution out of the family of solution represents a
subtle problem that was resolved only recently. It turns out
that the selection is only made by �a certain feature of� the
initial condition F�A ,�=0� �25,37–40�. If F�A ,�=0� has
compact support, the similarity solution, if any, is selected by
the behavior of F�A ,�=0� near the supremum Amax of the
support. If F�A ,�=0� has a power-law asymptote near Amax,
the exponent of this power law selects one of the solutions
from the family �B7�. If F�A ,�=0� goes to zero exponen-
tially fast at A→Amax �or if the support of F�A ,�=0� is in-
finite�, the limiting solution �B9� is selected.

This sensitivity to initial conditions shows a certain lack
of robustness of the Lifshitz-Slyozov model and its analogs

0.5 1 1.5 2 2.5 3 3.5 4
Η

1
2
3
4
5
6
7
8

�

FIG. 15. Rescaled distributions of the hole amplitudes ��1
���

for �1=2.5, 2, 1.5, and 1 �the latter corresponding to the limiting
distribution�. Smaller �1 are shown by thicker lines.

NONLINEAR THEORY OF NONSTATIONARY LOW MACH … PHYSICAL REVIEW E 77, 021307 �2008�

021307-17



like our Eqs. �B1�–�B3�. As a remedy, one has to account for
an additional physics �that may be less universal and more
system-dependent�. For example, in the context of the
interface-controlled Ostwald ripening strong selection is
achieved via an account of direct droplet merger events �41�.

As we show in Sec. VII, the Lifshitz-Slyozov-type model
does not agree with numerical simulations that start from
generic initial conditions. However, if one starts the simula-
tion with an assembly of holes, describable by the ansatz
�92�, the ansatz continues to hold, and the system approaches
the simple scaling regime predicted by the Lifshitz-Slyozov-
type theory. Therefore, we want to pursue the ansatz �92� a
bit further, as it provides an interesting, though nongeneric,
characterization of the hole coarsening. We assume that the
limiting distribution �B9�, corresponding to �1=1, is selected
and use Eq. �20� and the relation S���=1 /� to find the cor-
responding scaling behavior of the gas pressure p���. We
obtain

1

p���
dp

d�
= − 2	S��� = −

2	

�
, �B11�

which yields p���= p0��0 /��2	, where �0 is an effective “ini-
tial” time, and p0= p��0�. Using Eq. �21�, we find the follow-

ing relation between the original �physical� time t and the
new time �:

t =
2	�	+1

�	 + 1�
�0
1/2p0�0

	 .

As a result,

p�t�
p0

= 	 2	�0

�	 + 1�
�0
1/2p0t


2	/�	+1�

= � t0

t
�2	/�	+1�

,

where t0= t��0�. Now, in the low Mach number regime we
have been dealing with throughout this paper, the total en-
ergy of the gas decays in �almost� the same way as the pres-
sure, so Etot�t�� t−2	/�	+1�. We obtain Etot�t�� t−4/3 and
Etot�t�� t−5/4 in 2D �disks� and 3D �spheres�, respectively.
Again, the cooling dynamics proceeds slower than that pre-
dicted by Haff’s law �25�. We checked that the same conclu-
sion holds for any �1, that is for all possible self-similar
distributions of the hole amplitudes.
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